15 research outputs found

    DIN Spec 91345 RAMI 4.0 compliant data pipelining: An approach to support data understanding and data acquisition in smart manufacturing environments

    Get PDF
    Today, data scientists in the manufacturing domain are confronted with a set of challenges associated to data acquisition as well as data processing including the extraction of valuable in-formation to support both, the work of the manufacturing equipment as well as the manufacturing processes behind it. One essential aspect related to data acquisition is the pipelining, including various commu-nication standards, protocols and technologies to save and transfer heterogenous data. These circumstances make it hard to understand, find, access and extract data from the sources depend-ing on use cases and applications. In order to support this data pipelining process, this thesis proposes the use of the semantic model. The selected semantic model should be able to describe smart manufacturing assets them-selves as well as to access their data along their life-cycle. As a matter of fact, there are many research contributions in smart manufacturing, which already came out with reference architectures or standards for semantic-based meta data descrip-tion or asset classification. This research builds upon these outcomes and introduces a novel se-mantic model-based data pipelining approach using as a basis the Reference Architecture Model for Industry 4.0 (RAMI 4.0).Hoje em dia, os cientistas de dados no domínio da manufatura são confrontados com várias normas, protocolos e tecnologias de comunicação para gravar, processar e transferir vários tipos de dados. Estas circunstâncias tornam difícil compreender, encontrar, aceder e extrair dados necessários para aplicações dependentes de casos de utilização, desde os equipamentos aos respectivos processos de manufatura. Um aspecto essencial poderia ser um processo de canalisação de dados incluindo vários normas de comunicação, protocolos e tecnologias para gravar e transferir dados. Uma solução para suporte deste processo, proposto por esta tese, é a aplicação de um modelo semântico que descreva os próprios recursos de manufactura inteligente e o acesso aos seus dados ao longo do seu ciclo de vida. Muitas das contribuições de investigação em manufatura inteligente já produziram arquitecturas de referência como a RAMI 4.0 ou normas para a descrição semântica de meta dados ou classificação de recursos. Esta investigação baseia-se nestas fontes externas e introduz um novo modelo semântico baseado no Modelo de Arquitectura de Referência para Indústria 4.0 (RAMI 4.0), em conformidade com a abordagem de canalisação de dados no domínio da produção inteligente como caso exemplar de utilização para permitir uma fácil exploração, compreensão, descoberta, selecção e extracção de dados

    A DIN Spec 91345 RAMI 4.0 Compliant Data Pipelining Model: An Approach to Support Data Understanding and Data Acquisition in Smart Manufacturing Environments

    Get PDF
    Today, data scientists in the manufacturing domain are confronted with various communication standards, protocols and technologies to save and transfer various kinds of data. These circumstances makes it hard to understand, find, access and extract data needed for use case depended applications. One solution could be a data pipelining approach enforced by a semantic model which describes smart manufacturing assets itself and the access to their data along their life-cycle. Many research contributions in smart manufacturing already came out with with reference architectures like the RAMI 4.0 or standards for meta data description or asset classification. Our research builds upon these outcomes and introduces a semantic model based DIN Spec 91345 (RAMI 4.0) compliant data pipelining approach with the smart manufacturing domain as exemplary use case. This paper has a focus on the developed semantic model used to enable an easy data exploration, finding, access and extraction of data, compatible with various used communication standards, protocols and technologies used to save and transfer data.publishersversionpublishe

    Canvass: a crowd-sourced, natural-product screening library for exploring biological space

    Full text link
    NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio

    The commissioning of the CUORE experiment: the mini-tower run

    Get PDF
    CUORE is a ton-scale experiment approaching the data taking phase in Gran Sasso National Laboratory. Its primary goal is to search for the neutrinoless double-beta decay in 130Te using 988 crystals of tellurim dioxide. The crystals are operated as bolometers at about 10 mK taking advantage of one of the largest dilution cryostat ever built. Concluded in March 2016, the cryostat commissioning consisted in a sequence of cool down runs each one integrating new parts of the apparatus. The last run was performed with the fully configured cryostat and the thermal load at 4 K reached the impressive mass of about 14 tons. During that run the base temperature of 6.3 mK was reached and maintained for more than 70 days. An array of 8 crystals, called mini-tower, was used to check bolometers operation, readout electronics and DAQ. Results will be presented in terms of cooling power, electronic noise, energy resolution and preliminary background measurements

    Results from the Cuore Experiment

    Get PDF
    The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric experiment searching for neutrinoless double beta decay that has been able to reach the 1-ton scale. The detector consists of an array of 988 TeO2 crystals arranged in a cylindrical compact structure of 19 towers, each of them made of 52 crystals. The construction of the experiment was completed in August 2016 and the data taking started in spring 2017 after a period of commissioning and tests. In this work we present the neutrinoless double beta decay results of CUORE from examining a total TeO2 exposure of 86.3kg yr, characterized by an effective energy resolution of 7.7 keV FWHM and a background in the region of interest of 0.014 counts/ (keV kg yr). In this physics run, CUORE placed a lower limit on the decay half- life of neutrinoless double beta decay of 130Te > 1.3.1025 yr (90% C. L.). Moreover, an analysis of the background of the experiment is presented as well as the measurement of the 130Te 2vo3p decay with a resulting half- life of T2 2. [7.9 :- 0.1 (stat.) :- 0.2 (syst.)] x 10(20) yr which is the most precise measurement of the half- life and compatible with previous results

    An Approach for Implementing ISA 95-Compliant Big Data Observation, Analysis and Diagnosis Features in Industry 4.0 Vision Following Manufacturing Systems

    No full text
    Part 4: Manufacturing SystemsInternational audienceCurrent trends are showing a technological evolution to an unified Industrial Internet of Things network where smart manufacturing devices are loosely coupled over a cloud to realize comprehensive collaboration and analysis possibilities, and to increase the dynamic and volatile of manufacturing environments. This rising complexity generates also higher ranges of error possibilities and analog a growing demand of new diagnostic approaches to handle also those highly complex systems as manufacturing systems which are following the Industry 4.0 vision. This is an ISA’95 compliant approach of a Big Data analytics methodology for analysis and observation in Industry 4.0 vision following manufacturing systems

    A formal engineering approach for industrial SoA-based systems of systems

    No full text
    Current implemented manufacturing and continuous production process systems are strongly being influenced by the fusion of mechatronics, communication, control and information technologies [2][3][4][5]. The miniaturization of control and automation devices with embedded intelligence is transforming the production systems into a very large infrastructure, where different systems interact in a structural and behavioral manner for pursuing common goals [17][16]. The result is a very large complex system-of systems (SoS) [19][24]. The application of the service-oriented architecture paradigm is appearing as a promising approach to develop and implement the control and management of those SoS [26].This paper describes an approach to support the engineering of service-oriented based Industrial System-of-Systems and presents the first results of application of the approach to a real heterogeneous system composed of a district-heating, transportation and an electrical power distribution system.Godkänd; 2013; 20121016 (jerker)Architecture for Service-Oriented Process – Monitoring and Contro

    The smashHitCore ontology for GDPR-compliant sensor data sharing in smart cities

    No full text
    The adoption of the General Data Protection Regulation (GDPR) has resulted in a significant shift in how the data of European Union citizens is handled. A variety of data sharing challenges in scenarios such as smart cities have arisen, especially when attempting to semantically represent GDPR legal bases, such as consent, contracts and the data types and specific sources related to them. Most of the existing ontologies that model GDPR focus mainly on consent. In order to represent other GDPR bases, such as contracts, multiple ontologies need to be simultaneously reused and combined, which can result in inconsistent and conflicting knowledge representation. To address this challenge, we present the smashHitCore ontology. smashHitCore provides a unified and coherent model for both consent and contracts, as well as the sensor data and data processing associated with them. The ontology was developed in response to real-world sensor data sharing use cases in the insurance and smart city domains. The ontology has been successfully utilised to enable GDPR-complaint data sharing in a connected car for insurance use cases and in a city feedback system as part of a smart city use case

    The smashHitCore ontology for GDPR-compliant sensor data sharing in smart cities

    No full text
    The adoption of the General Data Protection Regulation (GDPR) has resulted in a significant shift in how the data of European Union citizens is handled. A variety of data sharing challenges in scenarios such as smart cities have arisen, especially when attempting to semantically represent GDPR legal bases, such as consent, contracts and the data types and specific sources related to them. Most of the existing ontologies that model GDPR focus mainly on consent. In order to represent other GDPR bases, such as contracts, multiple ontologies need to be simultaneously reused and combined, which can result in inconsistent and conflicting knowledge representation. To address this challenge, we present the smashHitCore ontology. smashHitCore provides a unified and coherent model for both consent and contracts, as well as the sensor data and data processing associated with them. The ontology was developed in response to real-world sensor data sharing use cases in the insurance and smart city domains. The ontology has been successfully utilised to enable GDPR-complaint data sharing in a connected car for insurance use cases and in a city feedback system as part of a smart city use case.Design for Sustainabilit
    corecore